
Numerical Differentiation and Integration Tutorial 
 
 
INTRODUCTION 
 

Numerical integration and differentiation are useful techniques for manipulating data 
collected from experimental tests. For example, often an object’s displacement and acceleration 
are measured with respect to time, using an LVDT and accelerometer, respectively. It may be 
useful to differentiate the LVDT data to obtain velocity and acceleration. Likewise, it may be 
useful to integrate the accelerometer data to achieve velocity and displacement. This document 
explains the basics of numerical differentiation and integration and applies these techniques to a 
simple data set. Also, some common problems that may arise due to imperfect data are 
discussed.  

 
BASIC NUMERICAL DIFFERENTIATION AND INTEGRATION  

 
There are multiple different methods which can be used for both numerical differentiation 

and integration.  
 
Differentiation 
 
Numerical differentiation serves to determine the local slope of the data, dy/dx. Fig. 1 shows 

a sample data set consisting of 7 data points, and shows how the individual points will be 
referenced.  

 

 
Fig. 1.  Reference labels for data points when performing numerical differentiation and integration. 

In order to find the first derivative of a data set, one of three methods can be used: first 
forward differentiation, first backward differentiation, and first central difference.  

In first forward differentiation, a point is chosen as a reference (the “i” point), and this point 
and the next one are used to determine the local slope. This method can be performed at the 
beginning of a data set, using the first two data points. The equation used is 
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First backward differentiation is similar, except that the reference point and the one previous 
to it are used. Therefore, this method can be performed at the end of a data set, using the last two 
points. The slope is found using 
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The first central difference method finds the average slope over three data points, using 
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First central difference is the most accurate of these three methods. 
 
Integration 
 
Two methods for numerical integration will be discussed here, the rectangular rule and the 

trapezoidal rule. The basic principle of the rectangular rule is shown in Fig. 2. 
 
 

 
Fig. 2.  Numerical integration using the rectangular rule.  

The equation used to determine the integral using the rectangular rule is 
 ( )i1ii1ii xxyII −+= +− . (4) 
The trapezoidal rule, illustrated in Fig. 3, is clearly more accurate than the rectangular rule 

and is therefore preferred.  
 

 
Fig. 3.  Numerical integration using the trapezoidal rule.  

The equation used to find the integral using the trapezoidal rule is   
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Note that, even for the first point of the data set, an “i – 1” term is required. This is the initial 

condition for the integration. This requirement is one reason for acquiring both displacement and 
acceleration data for a given test. The displacement data can be differentiated to determine 
velocity, since differentiation requires no initial condition. This velocity, along with the 
measured displacement, can provide the initial conditions needed to numerically integrate the 
acceleration data.  

 
Example: A Free-Falling Body 
 
A free-falling body will be used as an example to demonstrate the principles of numerical 

differentiation and integration.  
Consider a free falling body dropped from an unknown height and acted on by gravity alone.  

The object is known to fall for 12 seconds and begin free-fall with time, velocity and 
displacement equal to zero.   

In Excel (or another spreadsheet program), generate the time and acceleration data for the 
falling body. Input the time data in column 1 in 1-second intervals for a total of 12 seconds. The 
acceleration due to gravity is constant, so input an acceleration of 32.2 ft/sec2 in each row of 
column 2.  The body starts at rest, and we will consider the initial location to be the reference 
point. The data should resemble that shown in Table 1.  From this data, the velocity and 
displacement of the body will be determined. 

Table 1: Time and acceleration data for a free-falling body. 

Time Acceleration Velocity Displacement
0 32.2 0 0 
1 32.2   
2 32.2   
3 32.2   
4 32.2   
5 32.2   
6 32.2   
7 32.2   
8 32.2   
9 32.2   
10 32.2   
11 32.2   
12 32.2   

 
A plot of the acceleration of the free-falling body is shown in Fig. 4. As the acceleration is 

constant, it is simply a horizontal line.  
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Fig. 4.  Acceleration of a free-falling body. 

Now, integrate this acceleration data using the trapezoidal rule, to obtain velocity. The 
needed initial condition, Ii-1, can be found from the known data. In this exercise, the velocity at 
time = 0 is 0, since the object started at rest.  In row 1 of the velocity, enter 0 and then use (5) to 
determine values for rows 2-12.  When the resulting velocity data is plotted versus time, it should 
look like Fig. 5. 
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Fig. 5.  Velocity of a free-falling body, found by integrating acceleration data. 

The final data point has been “lost,” the velocity can now be found up to time = 11 seconds, 
since there is no “i +1” data point to be used for the last point.  

Next, integrate the velocity data again using the trapezoidal rule to obtain the displacement. 
When plotted, it should resemble Fig. 6. 
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Fig. 6.  Displacement of a free-falling body, found by integrating acceleration data.  

Note the trend of the acceleration, velocity and displacement data as each integration is 
performed. The original horizontal line becomes a straight line with a non-zero slope, which then 
becomes parabolic. 

 
IMPERFECT DATA 
 

The following examples address some of the problems encountered when imperfect, “real-
world” data is used. When taking laboratory measurements, the data is frequently contaminated 
by factors such as bias, drift, and noise. Bias and noise, and how they affect numerical 
differentiation and integration, will be discussed here. Data with bad resolution will also be 
addressed, along with methods for correcting these problems. 

The data used in these examples were produced using a Simulink model. It is therefore 
possible to analytically remove the contamination and show the “correct answer” for comparison 
purposes. 

 
Bias 
 
Data with a DC offset, or bias, will be addressed first. Fig. 7 shows a damped exponential 

response with a bias of +0.1.  
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Fig. 7.  Data with bias. 

This is acceleration data, and it will therefore be integrated twice to find displacement. Fig. 8 
shows the result of these integrations.  

 

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

D
is

pl
ac

em
en

t (
m

)

Displacement found by
integrating
Actual displacement

 
Fig. 8.  Integrating data with bias. 

Clearly, the result is entirely overwhelmed by what has become a parabolic drift. However by 
zooming in on the plot, as shown in Fig. 9, it can be seen that the damped exponential form is 
still present.  
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Fig. 9.  Integrating data with bias, zoomed in. 

This drift could have been corrected on the original acceleration data, by determining the 
value of the bias and removing it before integrating 

Displacement data with a bias of 0.003, shown in Fig. 10, will now be differentiated twice to 
find acceleration.  
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Fig. 10.  Displacement data with bias.  

The result of these integrations is shown in Fig. 11. Only one curve can be seen, because the 
real acceleration and the acceleration found by differentiating overlay each other perfectly. The 
DC bias represents a constant, which goes to zero when it is differentiated. Therefore the bias 
does not interfere with the differentiation.  
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Fig. 11.  Differentiating with bias 

 
Noise 
 
The following two examples demonstrate the differing effects of noise on numerical 

differentiation and integration.  
Fig. 12 shows displacement data which are contaminated by high-frequency sinusoidal noise.  
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Fig. 12.  Displacement data with sinusoidal noise.  

This displacement data will now be differentiated twice to find acceleration. The resulting 
plot is shown in Fig. 13.  
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Fig. 13.  Differentiating with noise 

This displacement data are clearly useless—the high frequency noise has been greatly 
amplified and now dominates the response. Consider why the derivative of the high-frequency 
signal has been so greatly amplified compared to that of the low-frequency damped sine wave.  

Integration of noisy data will now be considered. Fig. 14 shows acceleration data with white 
noise.  
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Fig. 14.  Acceleration data with noise 

This acceleration data will now be integrated twice to find displacement. The result is shown 
in Fig. 15. 
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Fig. 15.  Integrating with noise 

Note that the noise is not visible in the integrated result—numerical integration acts as a 
smoothing process, and tends to reduce irregularities in the data. Notice, however, that the noise 
has resulted in a drift in the second half of the response, particularly in the regions where the 
noise amplitude was larger in comparison to the signal amplitude. This is most likely a result of 
the noise being more positive than negative in these regions, so that it essentially acted as a small 
DC bias.  

Some attempt could be made to smooth the data before integrating in order to avoid these 
problems. For data which is a straight line, such as the constant acceleration discussed in a 
previous example, this is quite simple. A linear regression could be performed on the original 
data before it was integrated. A linear regression could also be performed after the first 
integration, or a curve fit could be performed after the second integration. For a more 
complicated data set, such as a damped exponential curve, some type of filter could be used to 
remove noise. This could be done when the original data was collected, using a physical low-
pass filter. The data could also be processed using a software filter—for example by filtering the 
data using a low-pass filter RC circuit modeled in Simulink. Other documents are available 
which discuss the use of an RC circuit as a filter, as well as how to model this in Simulink. 

 
Poor Resolution 
 
Poor resolution is another problem frequently seen in measurements, this means that an 

insufficient sampling rate has been used. The following examples use data with a sampling rate 
of approximately 8 samples per cycle. This rate is sufficient to show the general form of the data, 
but the data is not smooth.  

Fig. 16 shows displacement data. 
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Fig. 16.  Displacement data with bad resolution. 

This data was then differentiated twice, and the result is shown in Fig. 17.  
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Fig. 17.  Differentiating data with bad resolution. 

The irregular, rough slope of the original plot resulted in unusable acceleration data when 
differentiated. 

Fig. 18 shows acceleration data with bad resolution.  
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Fig. 18.  Acceleration data with bad resolution. 

The acceleration data was integrated twice, and the result is shown in Fig. 19. 
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Fig. 19.  Integrating data with bad resolution. 

The drift evident in this data is likely due to the same effect as was seen in Fig. 15—the data 
were no longer balanced about the x-axis. This led to a bias after the first integration and a drift 
after the second.  

Problems due to data with bad resolution can be avoided by using a greater sampling rate, at 
least 10-20 times the highest frequency being measured.  
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