
Filtering with RC Circuits 
 
 
INTRODUCTION 
 

This tutorial addresses the response of a first-order system, an RC circuit like that shown in 
Fig. 1, to a sinusoidal input signal.  

 

 
Fig. 1.  RC Circuit 

As will be shown, this circuit acts as a simple low-pass filter; it allows low-frequency sine 
waves to pass through relatively unaffected and attenuates high-frequency signals. The definition 
of “low-frequency” and “high-frequency” as they relate to an individual filter depends on the 
cut-off frequency of the filter, which will be discussed in detail.  

This RC circuit is a first-order system. Another document is available which discusses the 
theory of first-order systems in more detail.  

A Simulink model describing the behavior of this circuit will be used to demonstrate the 
effect of the circuit on various sine waves. Therefore, basic familiarity with Simulink is helpful 
but not necessary.  

 
SYSTEM MODEL 

 
The Simulink model in Fig. 2 represents a first-order, single-degree-of-freedom RC circuit.  

Note that the input to the system is a sine wave; this model will therefore show how the RC 
circuit will respond to a sinusoidal input such as an alternating electrical current.  

 

 
Fig. 2.  RC circuit with sine wave input signal. 

The system represented in Fig. 2 can also be described with a differential equation of the 
form 
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Fig. 1. RC Circuit 

Fig. 2. RC circuit with sine wave input signal. 



where 
x = output voltage from the circuit, 
x&  = the time rate of change of the output voltage, 
R = the resistor value, 
C = the capacitor value, and  
f(t) = forcing function, a sine wave.  

As you can see in Fig. 2, ( ) 500RC1 =  for this circuit, so RC = 0.002. For this type of RC 
circuit, the value of RC is the time constant, τ, of the system. These numbers will resurface later 
on in this tutorial.   

 
FILTERING CHARACTERISTICS 

 
Before examining the plots that were generated from the circuit model shown in Fig. 2, the 

behavior of the RC circuit will first be discussed.  
 
Bode Plot 
 
A Bode diagram will be used to better understand how an RC circuit affects an input voltage 

by displaying the characteristics of the circuit in the frequency domain. Fig. 3 shows the Bode 
diagram for two different RC circuits. The green line describes the circuit having an RC value of 
0.01, and the blue line describes the circuit with an RC of 0.002.   

 

 
Fig. 3.  Bode plots for RC circuits with different time constants.  
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Fig. 3. Bode plots for RC circuits with different time constants. 



A Bode Diagram actually consists of two separate plots. The top plot shows magnitude 
versus frequency on a log-log scale. This represents the magnitude attenuation of the signal—it 
gives the ratio of the output to the input in decibels. The magnitude of the ratio is always less 
than or equal to 1 because the input signal is either unaffected or attenuated—the output signal is 
never greater than the input.  The bottom plot shows phase versus frequency on a linear-log plot, 
this represents the phase shift of the output with respect to the input. For both plots, the 
frequency is in rad/sec.   

 
Cut-Off Frequency 
 
In Fig. 3, the blue curves are for a circuit having a time constant of 0.002 seconds; this is the 

system shown in the model in Fig. 2. A tag has been placed on the blue line on the magnitude 
plot at  = 500 rad/sec. This location is called the “3dB down point” because at this frequency 
the magnitude is attenuated by 3 decibels. The attenuation is converted to decibels using  

ω
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Three dB is equivalent to an output/input ratio of 22 , which is approximately equal to 
0.707. This point is also called the cut-off or break frequency. The attenuation due to the filter 
gradually increases as the frequency increases, as can be seen by the smooth curve in the upper 
plot in Fig. 3. There is no clearly defined point representing the upper end of the frequency range 
of the filter. Therefore a point must be chosen, and the 3dB down point is frequently used. The 
reason for this can be seen in Fig. 4—if the line of the descending portion of the graph is 
extended back, the frequency at which it intersects the top of the graph is equal to the 3 dB down 
point.  

 

Cut-off 
frequency

 
Fig. 4.  Graphical method for determining cut-off frequency. 

Signals with frequencies below the cut-off frequency are considered to be relatively 
unaffected by the filter. It should be noted, however, that a signal whose frequency is just below 
the cut-off will be attenuated by approximately 30% —this  is not clear from the Bode diagram, 
as it is plotted on a log scale. Other types of filters can provide a sharper roll-off, but RC circuits 
have the advantage of being very simple and inexpensive to design and produce. 
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4. Graphical method for determining cut-off frequency. 



Cut-Off Frequency for RC Circuits 
 
Recall that the time constant of the system (τ) shown in Fig. 2 is 0.002 seconds. Therefore 

1/τ is 500 rad/sec; this is the cut-off frequency of the circuit as was seen in Fig. 3. This is always 
true for first-order systems. To prove this, the equation describing the system will be examined 
further. The general equation for a first-order system is  

 ( )tfxx =+τ&  (3) 
This is the same as (1), except that the equation has been rearranged slightly and RC has been 
replaced by τ. The transfer function (TF) of (3) is 
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+τ
=⇒ . (4) 

The transfer function is found by taking the Laplace Transform of (3), assuming that the initial 
conditions are zero. The transfer function is the ratio of the Laplace transform of the output 
(X(s)) to the Laplace transform of the input (F(s)). To represent (4) as a frequency response 
function (FRF), jω is substituted for s, where ω  is frequency in rad/sec and j is 1− . The TF 
then becomes 
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The right side of the equation will now be modified. Multiply both the numerator and the 
denominator by the complex conjugate of the denominator to move the complex numbers to the 
numerator. The result is 
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The magnitude of a number with real and imaginary parts is found using 

 ( ) ( )22 ImRemagnitude += . (7) 
Applying this to the right-hand side of (6), the result is  

 magnitude = ( ) ( )222
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which simplifies to 

 magnitude=
1

1
22 +τω

. (9) 

Since it is known that the cutoff frequency, cω , occurs at magnitude = 22 , this can be 
substituted into (9) to obtain 
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Solving for ω , the cut-off frequency is found to be c

 
τ

=ω
1

c . (11) 

Knowing this relationship greatly eases the design of an RC circuit to be used as a filter.  
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Phase Shift 
 
The lower plot in the Bode diagram in Fig. 3 shows the phase shift of the output relative to 

the input. The phase shift in degrees is plotted versus the frequency in rad/sec. Notice that the 
phase shift varies from 0° to almost -90°. The negative sign of the phase shift means that the 
output lags behind the input.  
 
FILTERING OF SINEWAVES 
 

A sine wave signal will now be input into the RC circuit and the resulting output will be 
examined. The input and output will be compared in the time domain. Based on the previous 
discussion about cut-off frequency, it can be predicted that a sine wave with a frequency 
significantly lower than the cut-off frequency will have only a slight phase shift and small 
attenuation.   

The first sine wave to be used has a frequency of 10 Hz. It is input into the system shown in 
Fig. 2 which has a cut-off frequency of 500 rad/sec, or approximately 80 Hz. Therefore 10 Hz 
would be considered a low frequency relative to the cutoff frequency. Fig. 5 compares the input 
and output signals using the scope block in the Simulink model. 

 

 
Fig. 5.  Amplitude attenuation and phase shift of a 10 Hz sine wave.  

We can see that the prediction was accurate, there is a small phase shift and some 
attenuation. To quantify the phase shift, the relative locations of the purple and yellow peaks are 
examined. The distance between peaks is 0.002 seconds, or approximately 7.2°. Looking on the 
Bode diagram in Fig. 6 at 10 Hz (62.8 rad/sec), it is found that the predicted phase shift is, as 
expected, 7.2°. 
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Fig. 5. Amplitude attenuation and phase shift of a 10 Hz sine wave. 



 
Fig. 6.  Bode diagram showing phase shift at 10 Hz (62.8 rad/sec). 

Considering the amplitude attenuation using similar means, by examining both the time-
domain plot and the upper plot of the Bode diagram, it is found that the amplitude is attenuated 
by 0.069 dB. 

Now a sine wave above the cut-off frequency will be examined.  Fig. 7 shows a 200 Hz sine 
wave passed through the RC circuit. 

 

 
Fig. 7.  Input versus output of a 200 Hz sine wave. 

Clearly, this signal has been affected much more significantly than the previous example. For 
an input signal at 200 Hz, or 1257 rad/sec this filter results in a phase shift of –68.4° and an 
amplitude attenuation of 8.64 dB.  
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Fig. 6. Bode diagram showing phase shift at 10 Hz (62.8 rad/sec). amplitude attenuation using similar means, 
by examining 

Fig. 7. Input versus output of a 200 Hz sine wave. 


