

Raman spectroscopy applied to monitoring, modeling and control of biologics production

Biopharmaceutical Process and Quality Consortium at UMass Lowell

John Paul Smelko May 30,2014

Outline

- Background
 - Current and future state of bioprocess control
 - Biogen's vision for APC
 - What is Raman Spectroscopy?
- Raman
 - In Situ Application
 - Model development
 - Case Study
- Feedback control strategies
- Technology rollout in manufacturing

Evolution of Cell Culture Processes

- From the 1980's to present, processes continue to evolve in order to:
 - Maximize protein production
 - Improve product quality
 - Accelerate development and commercialization
- Productivity has increased 1000 fold in 30 years
- Real time monitoring and control has not grown nearly as fast!
- APC will reduce this deficit yielding better controlled processes

Biologics Today

Discovered by Theodore T. Puck

- CHO cell line generated in 1957
- Complex cellular pathways
 - Still not fully understood
 - Highly complex and interrelated
 - Sensitive to changes in environment

Complex pathways can result in <u>variable</u>
CC processes

APC offers solutions to reduce variability by making real time adjustments!

Monitor & Control of Cellular Pathways is Critical

Major Inputs

- Seed density
- Feed strategy
- Environment
 - pH
 - **DO**
 - Temp
 - Mixing
 - Aeration
- Glucose (APC)
- Nutrients (APC)
 - (total amino)

Major Outputs

- Waste (APC)
 - Lactate
 - Ammonia
- Protein (APC)
 - Titer
 - PQ Attributes

Biogen's Overall Strategy

Consistent Cell Growth = Consistent titer and PQ

CCD APC Team

- Core Objective: Control cell culture variables in such a way to achieve consistent batch to batch performance

APC: Building the process of the future

- 1. Vendor raw material lot screening
- 2. Advanced BIIB QC raw material testing
- 3. Advanced monitoring during buffer prep (MFG)
- 4. Advanced monitoring and control of bioreactor (MFG & MS)

Goal: Reduce variability at each step...fine tune at bioreactor

Raman Spectroscopy

- Optical analytical technique based on inelastic scattering of monochromatic light
 - Discovered in 1928 by Sir C.V. Raman, FRS
 - Non-destructive
 - Advantage: High chemical specificity with little water interference
 - Disadvantage: Fluorescence
- Works well in industry
 - Used for analysis of solids, liquids or gases
 - Used *in situ* or bench top
 - Commercial grade equipment available
- Raman in Biotech
 - Multiple applications
 - Measure multiple constituents at once
 - CIP, SIP, autoclave tolerant
 - Low maintenance

7Nov1888 - 21Nov1970

Applications of Raman

- Bioreactor in situ
- Bioreactor off gas
- Media prep
- Downstream

Presentation Focus

In development

PoC completed

Exploration phase

Bioreactor (In Situ)

- Mammalian cell culture
 - Multiple literature publications in last 7 years
 - Multiple constituents monitored successfully
 - Glc, Lac, Gln, Glu, NH3, Titer, VCD, TCD, Viab.
 - General or product specific models
 - Depends on accuracy needed for control
 - Offline reference method
 - Nova Flex or Cedex Bio HT
 - Scalability of technology platform demonstrated

Bioreactor (*In Situ*) Biogen Experience

Process Metabolites & Electrolytes

Glucose ★
Lactate ★

Glutamine

Glutamate

Ammonium *

Sodium

Potassium

pН

Cell Growth Profiles

VCD ★
Total Cell Density
Viability

Batch Performance, Product Quality, & Assay Based Data

Titer
Amino Acids (Total Amino)

★
Product Quality Attributes

Legend

Established Models at BIIB

In development at BIIB

Potential Future Work

Focus Areas 🖈

Universal Process Glucose Model

Can we use a single model in many programs? (different medias, component ranges, cell densities, turbidities, etc.)

Universal vs. Program Specific Model Comparison

Examples of Glucose Control

Traditional glucose set point control to improve process consistency

Glucose / Lactate Feedback Control

- Problem: High lactate process is impacting VCD, viability, duration and titer
- Strategy: Control glucose at low level to induce lactate consumption

Glucose / Lactate Feedback Control

- <u>Problem:</u> High lactate process is impacting VCD, viability, duration and titer
- <u>Strategy:</u> Control glucose at low level to induce lactate consumption

Small Scale PoC

Raman / SIPAT Software

MFG Implementation – Things to Consider

Build Infrastructure

- Add extra reactor ports if necessary
- Integrate control valves / pumps to enable feedback control
- Integrate new software platforms that can interpret spectral data
- Create feedback automation code
- Identify long term ownership of systems
- Identify the value proposition per process
- Align technology with company priorities/focus

Acknowledgements

- CCD APC Team
 - Raman Team
 - Justin Moretto
 - Brandon Berry
 - Thomas Matthews
- An Zhang
- Brandon Moore

- RTP & Cambridge Pilot Plant Groups
- Technology Champions
 - Kelly Wiltberger
 - Thomas Ryll
 - Rohin Mhatre

Questions

