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GLYCOSYLATION IS A CRITICAL 

QUALITY ATTRIBUTE 

Affects clearance, immunogenicity, stability, 

folding, secretion, and activity 

Non-templeted process so glycans exhibit 

macro and micro-heterogeneity 
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RNase B,(Dwek Chem. Rev., 
1996, 96,683-720) 
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Types of oligosaccharides & putative 

glycosylation sites 

• N-linked type: Complex/High mannose/Hybrid 
type) 

 

 

 

 

 

 

 

 

 

 
) 

 

• O-linked type:  No universal                

    categorized types 

 N-linked site : Asn-X-Ser/Thr 

(X: any amino acid except proline) 

 O-linked site : Ser/Thr 
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Rudd et al., Biochimica Biophysica Acta 1248 (1995) 1-10 

Tissue Plasminogen Activator 

(tPA) 
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Properties of t-PA 

# of A.A. 527 

M.W. ~ 70kD with glycans 

# of disulfide bonds 17 

# of putative N- 

glycosylation sites 

4 

(Asn-117,184,218 & 448) 

Types 
One-chain/two-chain 

Type I/Type II 

Type I Type II 

(Rouf  et al. , Biotechnology Advances, 1996, 14(3), 239–266) 

Activity is affected by t-PA and 

plasminogen variants 
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Erythropoietin (EPO) vs. Darbepoietin 
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Three additional 

N-linked 

glycosylation sites 

were engineered 

into Darbepoietin 

Darbepoietin showed 

higher activity, longer 

duration and lower 

dosing than EPO 

Nature Biotechnology 21, 414 - 421 (2003) 
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Sialic acid immunogenicity 
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Sialic acid 

N-acetylneuraminic acid Neu5Ac or Sia 
 

 

N-glycolylneuraminic 

acid 
Neu5Gc 
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Two examples 

 Effects of process conditions on N-linked glycan 

structures 

 Metabolic engineering of CHO cells to produce a 

bioengineered heparin 
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Culture conditions 

• All cultures performed in a stirred bioreactor 
with pH and DO control, in fed-batch to 
maintain glucose and glutamine at target 
levels, HyQ SFM4CHO-Utility (protein-free) 

• Four culture conditions 

– Suspension 

– Cytodex 3 microcarriers 

– Cytopore 1 microcarriers 

– Suspension with a temperature reduction from 
37°C to 33°C at onset of stationary phase 
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Model systems 
 

 Chinese hamster ovary (CHO) cell line 

 Secreted alkaline phosphatase (SEAP) producing CHO cell 

line  (TR2-255, a generous gift  from Dr. Ermonval, Institute 

Andre Lwoff ) 

 Microcarriers        

 

 

Type Material 
Size 
(µm) 

Cytodex 3 

(Solid) 

Cross-linked dextran, 
collagen-coated 

141-
211 

(175) 

Cytopore 
1 

(Porous) 

Macroporous, cross-
linked cellulose, 

positively-charged 

200-
280 

(240) 
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Overall experimental 

flowchart 

Preliminary study 

(static culture) 

Size exclusion chromatography 

Phosphate affinity chromatography 

Purity check (SDS-PAGE) 

characterization of N-glycan structures 

Culture 

Purification 

Glycan analysis 
Mass spectrometry 

HPLC 

Sample preparation 

Bioreactor  

(SEAP CHO cells) 

Growth characteristics 

Productivity 

Metabolic activity 

Optimization 

(Bioreactor) 

Single temp. & Bi-phasic culture 
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In static culture, microcarriers 

outperform suspension cells 

0.0 2.5 5.0 7.5 10.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8Suspension

Cytodex 3

Days in culture

1
0

5
c
e
ll

s
/m

L

S
E

A
P

 a
c
tiv

ity
(U

/m
L

)

BPQC  Biopharmaceutical  Summit 2014  

June 6, 2014 



WWW.SUNYCNSE.COM 

In bioreactor cultures, suspension cells 

show better growth and productivity 
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Reducing the temperature extends 

growth and improves productivity 

 

Growth curve 

- Solid line : viable cell density 

- Dashed line: viability 

Accumulated activity of SEAP 
Suspension 

Cytodex 3 
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Greatest benefits seen in suspension culture 

 



No. 

Positive-ion mode 

Observed m/z * 
[M+Na]+ 

Calculated m/z * 
[M+Na]+ 

Composition/Sequence Abbreviation 

1 1136.9 1136.4 (HexNAc)1+(Man)3(GlcNAc)2 A1 

2 1283.5 1282.5 (HexNAc)1(Deoxyhexose)1+(Man)3(GlcNAc)2 A1F1 

3 1299.4 1298.4 (Hex)1(HexNAc)1+(Man)3(GlcNAc)2 A1G1 

4 1420.4 1419.5 (Hex)3+(Man)3(GlcNAc)2 A0M3 

5 1443.2 1444.5 (Hex)1(HexNAc)1(Deoxyhexose)1+(Man)3(GlcNAc)2 A1G1F1 

6 1459.1 1460.5 (Hex)2(HexNAc)1+(Man)3(GlcNAc)2 A1M1G1 

7 1502.3 1501.5 (Hex)1(HexNAc)2+(Man)3(GlcNAc)2 A2G1 

8 1582.0 1581.5 (Hex)4+(Man)3(GlcNAc)2 A0M4 

9 1648.2 1647.6 (Hex)1(HexNAC)2(Deoxyhexose)1+(Man)3(GlcNAc)2 A2G1F1 

10 1664.1 1663.6 (Hex)2(HexNAc)2+(Man)3(GlcNAc)2 A2G2 

11 1811.1 1809.6 (Hex)2(HexNAc)2(Deoxyhexose)1+(Man)3(GlcNAc)2 A2G2F1 

12 1826.1 1825.6 (Hex)3(HexNAc)2+(Man)3(GlcNAc)2 A2M1G2 

13 1866.0 1866.7 (Hex)2(HexNAc)3+(Man)3(GlcNAc)2 A3G2 

14 1907.5 1907.7 (Hex)1(HexNAc)4+(Man)3(GlcNAc)2 A4G3 

15 2029.7 2028.7 (Hex)3(HexNAc)3+(Man)3(GlcNAc)2 A3G3 

16 2176.0 2174.8 (Hex)3(HexNAc)3(Deoxyhexose)1+(Man)3(GlcNAc)2 A3G3F1 

17 2232.0 2231.8 (Hex)3(HexNAc)4+(Man)3(GlcNAc)2 A4G3 

18 2541.2 2539.9 (Hex)4(HexNAc)4(Deoxyhexose)1+(Man)3(GlcNAc)2 A4G4F1 

No. 

Negative-ion mode 

Observed m/z * 
[M+Na-H]- 

Calculated m/z * 
[M+Na-H]- 

Composition/Sequence Abbreviation 

1 1281.6 1281.5 (HexNAc)1(Deoxyhexose)1+(Man)3(GlcNAc)2 A1F1 

2 1444.2 1443.5 (Hex)1(HexNAc)1(Deoxyhexose)1+(Man)3(GlcNAc)2 A1G1F1 

3 1663.9 1662.6 (Hex)2(HexNAc)2+(Man)3(GlcNAc)2 A2G2 

4 1810.0 1808.6 (Hex)2(HexNAc)2(Deoxyhexose)1+(Man)3(GlcNAc)2 A2G2F1 

5 1826.1 1824.6 (Hex)3(HexNAc)2+(Man)3(GlcNAc)2 A2M1G2 

6 2098.9 2099.7 (Hex)2 (HexNAc)2(Deoxyhexose)1(NeuAc)1 
+(Man)3(GlcNAc)2 A2G2F1S1 

7 2449.0 2450.0 (Hex)2 (HexNAc)3(NeuAc)2+(Man)3(GlcNAc)2 A3G2S2 

8 2465.1 2464.9 (Hex)3(HexNAc)3(Deoxyhexose)1(NeuAc)1 
+(Man)3(GlcNAc)2 A3G3F1S1 

9 2539.9 2538.9 (Hex)4(HexNAc)4(Deoxyhexose)1+(Man)3(GlcNAc)2 A4G4F1 

Suspension 

Positive-ion mode 

Negative-ion mode 

Composition/Sequence of N-linked glycan pool  
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MALDI-TOF mass spectrometry is used to characterize N-linked 
glycans 
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Relative abundance of N-linked glycans 
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(A: GlcNAc, F: Fucose, G: Galactose, M: Mannose) N-glycan abbreviation  based on Butler’s paper, 2003, vol. 13, p601-622. 

(Based on Harvey, Rapid communications in Mass spectrometry, 1993, 7: 614-619) 
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Culture conditions affect antennary 

distribution and fucosylation 

Cytodex 3
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(B: biantennary, T: triantennary, Q: tetrantennary, F: fucosyl residue) 
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Complex glycans are the 

predominant form 
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HPLC  is used to quantitate 

glycans 

Suspension Cytodex 3 

Cytopore 1 Biphasic 

Culture conditions have subtle, but potentially important effects on glycosylation 
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Culture conditions affect sialylation and 

fucosylation 

Culture 

Condition 

Neutral N-linked glycans (%) Sialylated N-linked glycans (%) 

fucosylated non-

fucosylated 
Mono-sialylated Di-sialylated Tri-sialylated 

Total 

sialylated 

Total  

fucosylated 
fucosylated 

non- 

fucosylated 
fucosylated 

non- 

fucosylated 
fucosylated 

non- 

fucosylated 

Suspension 35.1 20.0 11.3 30.1 0 3.5 0 0 44.9 46.4 

Cytodex 3 11.3 14.4 2.2 55.1 6.7 6.1 0 4.2 74.3 20.2 

Cytopore 1 27.0 13.1 3.3 42.2 0 10.4 0 4.1 59.9 30.3 

Biphasic  

suspension 
11.9 34.3 6.1 32.5 8.9 6.2 0 0 53.8 27.0 
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Reduced temperature cultures 

also show different sialic acids 
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Conclusions 

 Biphasic temperature reduction improves 
productivity for some proteins (Nam, et al, Cytotech., 59: 

81-91 (2009) 

 Microcarrier cultures do not necessarily improve 
cell density or productivity (Nam, et al. Biotech. Prog., 23: 652 

-660, 2007) 

 Sialic acid and fucosylation are affected by 
temperature profiles and microcarrier culture (Nam, 

et al., Biotech. Bioeng. 100: 1178–1192, 2008)  
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Heparin  is a linear highly-sulfated 

polysaccharide (glycosaminoglycan) 

 
The structure consists of repeating disaccharide 

units alternating glucuronic/iduronic acid and 

N-acetyl glucosamine. 

Loganathan D. et al., Biochemistry, 1990 

Pervin A. et al., Glycobiology, 1995 

Heparin is the most widely used 

anticoagulant drug in the world 

Heparin 
(Antithrombin III 

binding site) 

Antithrombin III 
 

Thrombin Prothrombin 

Fibrinogen 

Fibrin fibers 

Wound clotting 

• 300,000 doses 

per day in US 

• ~100 tons/year 

• $7 billion/year 
BPQC  Biopharmaceutical  Summit 2014  
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Animal tissues are the current 

source of heparin 
 

Source 

 Primarily produced in mast cells 

 Extracted from animal tissues (porcine intestine, bovine lung) 

 

Problems 

– Animal subspecies, feed and environment  effect heparin quality 

– Animal number (1700 million pigs  

     annually)  

 Intestines of 3 pigs are needed to provide  
 1 gram of heparin 

– Contamination crisis of 2008:         
oversulfated chondroitin sulfate led to the       
death of over 100 people in US alone 

      

 Objective:  Use metabolic engineering to take biopharmaceutical 

development to the next step by producing polysaccharide drugs in 

culture under GMP conditions 

 BPQC  Biopharmaceutical  Summit 2014  
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Heparin/Heparan Sulfate 

Biosynthesis 

Heparin & heparan sulfate share a similar biosynthetic pathway 

Se 

Golgi 

Rough ER 

3. Modifications: deacetylation, 
sulfation, epimerization 

2. Elongation: EXT family 

 
 
 
 
 
 
 
 
EXT1/EXT2 copolymerase 

5-10 

2S 2S 2S 2S 

1. Initiation:  
tetra saccharide 
linker 
  Xyl-Gal-Gal-GLA 

6S 6S 6S 6S 6S 

 
 C5 Epimerase 

Sulfotransferases OSTs: 6OST 
                                             2OST 
                                             3OST 

N-deacetylase/N-sulfotransferase NDST  

3S 

Core protein 

Expression of different isoforms 

determines the structure of the 

glycosaminoglycan-heparin or 

heparan sulfate 

Core proteins may also play a role 
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Results 
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3OST1 

NDST2 and 3OST1 are critical for 
heparin synthesis 
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Engineered GAGs show increased 

sulfation, but not the correct structure 
Dual expression clones secrete 

much more GAG into medium 

Anti-coagulant activity is 
increased, but not enough 

  
CHO-S 

media 

D3 

media 

D29 

media 

GAGs (μg) 19.3 85.2 173.2 

HS/HP (μg) 18.5 85.2 173.2 

Baik et al. Metabolic engineering 

of Chinese hamster ovary cells: 

Towards a bioengineered 

heparin, Metabolic Engineering, 

14: 81–90. (2012). 

doi.org/10.1016/j.ymben.2012.

01.008 
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Can bioprocess manipulations improve 

productivity, activity, and structure? 
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Sulfation levels decrease during 

batch culture 

CHO-S® 

D29 
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Growth profile of Dual-29 cell line 
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All feeds improved maximum cell density and IVCD. Feed 1(CD EfficientFeedTM B) and 

a combination of Feeds 1&2 (FunctionMaxTM Titer Enhancer) increased maximum cell 

density and culture longevity 

Fed-batch experiments to improve 

IVCD and productivity 
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GAG production is increased upon feeding. 

D29 cells are most improved. 

0 

10 

20 

30 

40 

50 

60 

70 

Control Glucose Galactose Feed 1 Feed 1+2 

A
m

o
u

n
t 

o
f 

G
A

G
 (

u
g

/m
l)

 

CHO-S 

Dual-29 

BPQC  Biopharmaceutical  Summit 2014  

June 6, 2014 



WWW.SUNYCNSE.COM 

Fed-batch bioreactors show 

nearly 100 µg/mL 

EfficientFeedTM B 

and glucose fed on 

alternate days 

Cultures exhibit 

very high oxygen 

demand 
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Amino acid analysis shows cystine 

depletion  

Run 1 Relative Concentrations Run 2 Relative Concentrations 

COMPONENT D0 D3 D5 D7 D9 D11 COMPONENT D0 D2 D4 D6 D10 

L-ALANINE 100% 3205% 11257% 11107% 11834% 7927% L-ALANINE 100% 1586% 6620% 10993% 10318% 

L-ARGININE 100% 59% 72% 47% 55% 86% L-ARGININE 100% 97% 79% 65% 92% 

L-ASPARAGINE 100% 8% ND ND ND ND L-ASPARAGINE 100% 73% 15% 2% ND 

L-ASPARTIC ACID 100% 88% 8% 27% NQ 36% L-ASPARTIC ACID 100% 118% 150% 90% 57% 

L- CYSTINE 100% NQ ND ND ND ND L- CYSTINE 100% 49% NQ ND ND 

ETHANOLAMINE 100% NQ 34% NQ 16% 61% ETHANOLAMINE 100% 63% NQ 9% 48% 

L-GLUTAMINE (mM) - NQ NQ NQ NQ 0.5 L-GLUTAMINE (mM) - NQ NQ NQ NQ 

L-GLUTAMIC ACID 100% 74% 5% 13% 3% 17% L-GLUTAMIC ACID 100% 95% 48% 20% 24% 

GLYCINE (mM) NQ 0.9 3.3 2.0 2.6 3.7 GLYCINE (mM) NQ 0.9 1.5 2.5 3.7 

L-HISTIDINE 100% 68% 86% 63% 71% 99% L-HISTIDINE 100% 98% 88% 81% 103% 

HYDROXY-L-PROLINE 100% 99% 130% 101% 115% 139% HYDROXY-L-PROLINE 100% 107% 112% 118% 135% 

L-ISOLEUCINE 100% 64% 43% 42% 37% 53% L-ISOLEUCINE 100% 96% 87% 64% 68% 

L-LEUCINE 100% 60% 25% 35% 23% 32% L-LEUCINE 100% 96% 81% 52% 47% 

L-LYSINE 100% 60% 78% 50% 59% 95% L-LYSINE 100% 97% 83% 68% 99% 

L-METHIONINE 100% 53% 96% 53% 69% 120% L-METHIONINE 100% 92% 85% 77% 122% 

AMMONIA 0.1 4.8 6.3 4.2 4.5 9.7 AMMONIA (mM) NQ 2.8 7.0 6.0 7.9 

L-PHENYLALANINE 100% 56% 62% 45% 48% 78% L-PHENYLALANINE 100% 94% 76% 58% 83% 

L-PROLINE 100% 79% 100% 76% 86% 108% L-PROLINE 100% 97% 95% 92% 109% 

L-SERINE 100% 38% 21% 18% 17% 26% L-SERINE 100% 80% 54% 23% 29% 

L-THREONINE 100% 73% 86% 65% 72% 97% L-THREONINE 100% 101% 90% 81% 102% 

L-TRYPTOPHAN 100% 79% 111% 79% 90% 131% L-TRYPTOPHAN 100% 98% 105% 101% 130% 

L-TYROSINE  100% 54% 23% 30% 21% 29% L-TYROSINE  100% 92% 63% 33% 39% 

L-VALINE 100% 64% 47% 48% 43% 55% L-VALINE 100% 98% 83% 64% 70% 

B-12 100% 80% 1282% 371% 799% 1341% B-12 100% 81% 531% 714% 1325% 

FOLIC ACID 100% 98% 459% 190% 350% 583% FOLIC ACID 100% 83% 265% 372% 496% 

NIACINAMIDE 100% 53% 744% 266% 477% 1001% NIACINAMIDE 100% 87% 342% 562% 1003% 

RIBOFLAVIN 100% 32% 60% 38% 57% 72% RIBOFLAVIN 100% 60% 57% 71% 86% 

THIAMINE 100% 61% 31% NQ 20% 70% THIAMINE 100% 108% 98% 60% 85% 
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Disaccharide analysis shows little 

difference from shaker studies 
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qPCR shows variation in expression of endogenous 

and transgenes in heparin/heparan sulfate pathway 
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Summary 

 We have successfully metabolically engineered 

CHO cells to produce a more heparin-like GAG 

 Sulfation pattern does not match pharmaceutical 

heparin 

 Engineered cells exhibit distinctly different 

metabolic behavior 

 Significant increases in glucose and oxygen uptake 

 Substantially larger cells 

 Sulfur content in medium (as cysteine/cystine) 

appears to be insufficient 
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Fundamental Questions 

 What is the relationship between enzymes 
activities and glycan structures? 

 What is the relationship between culture 
conditions and media formulations and glycan 
structures? 

 Can we rationally engineer cells and processes to 
produce the desired glycans? 

 Can we use combinatorial approaches of 
knockin/knockout/process optimization to a 
produce desired glycans? 

 What impact does this have on biosimilars? 
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