PAT in Biotechnology Manufacture

Kurt Brorson, Ph.D. Division of Monoclonal Antibodies OBP/CDER

Views presented are those of the speaker & not necessarily official FDA policy

PAT Guidance

Guidance for Industry

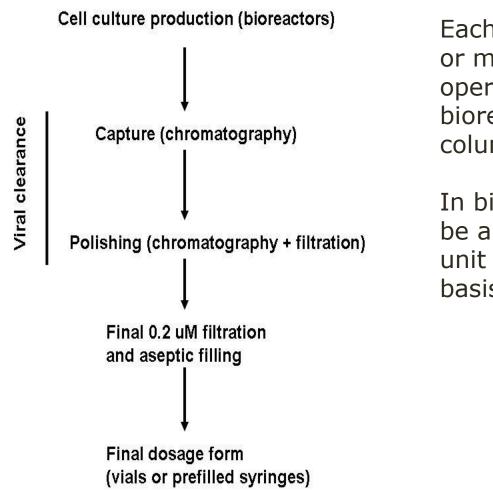
PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) Office of Regulatory Affairs (ORA)

> > Pharmaceutical CGMPs September 2004

- Released September 29, 2004
- Scientific principles and tools
 - Process Understanding
 - PAT Tools
 - Risk-Based Approach
 - Integrated Approach
- Regulatory Strategy accommodating innovation
 - Training
 - Lab research
- www.fda.gov/cder/gmp
- Can this be applied to biotech?

The Essence of PAT


Product quality is monitored and controlled during the manufacturing process.

- Process decisions are based on assessments of material attributes.
 - Forward-feed of incoming material
 - In-process monitoring & control
- Critical product attributes measured/assessed either
 - Instantaneously (on-line, in-line, at-line) or
 - Before decision point (near at-line)
 - With as large a window as feasible

Potential Critical Quality Attributes (CQA's) for Biopharms

- Potency/strength
- Post-translational modifications
- · Isoelectric point
- . Aggregation
- · Size
- · Sterility
- · Adventitious agents
- · Impurities (e.g., DNA, Host Cell Proteins)
- Formulation components

Major Stages in Bioprocessing

Each stage has one or more unit operations (e.g. bioreactors, columns, etc.)

In biotech, PAT can be applied on a unit operation basis Biotech Unit Operations are composed of sequential steps

Cell culture

- Bioreactor prep
- Media fill
- Inoculate
- Feed

Harvest

CHROMATOGRAPHY

- Equilibrate the column
- Load the column
- Wash away unbound material
- Elute the bound material

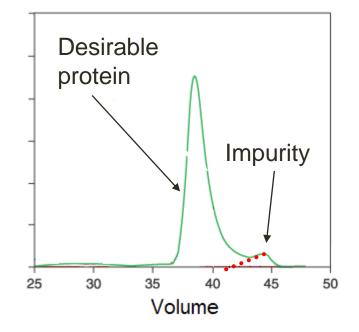
Transition from one step to the next

Decision points

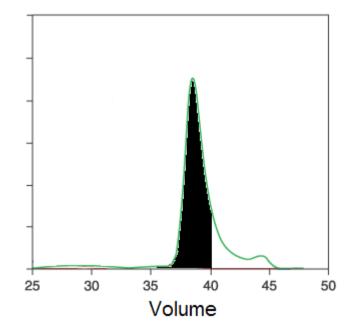
Points in a process at which transition decisions are made.
 Decision criteria

- The information that triggers a transition.
- Note: In PAT, Decision criteria assessment doesn't need to be instant, but must close enough to decision point to influence outcome

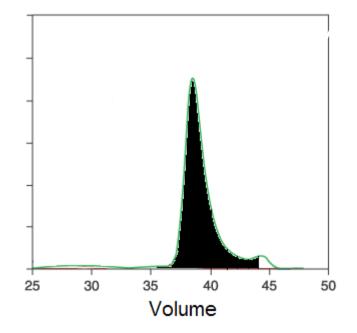
Decision points - Examples

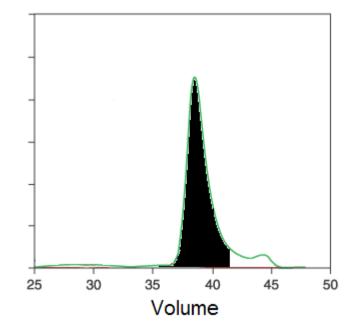

- When to feed the bioreactor
- When to harvest the bioreactor
- When to stop equilibrating a column
- When to start/stop collecting column eluate
- When to stop diafiltration
- When to stop mixing a protein solution
- When to stop lyophilization

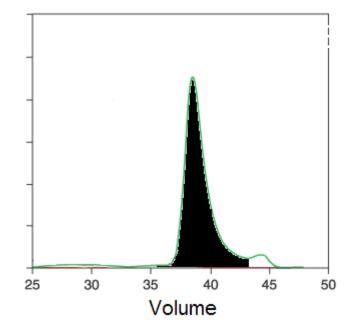
Decision Criteria – Column Example

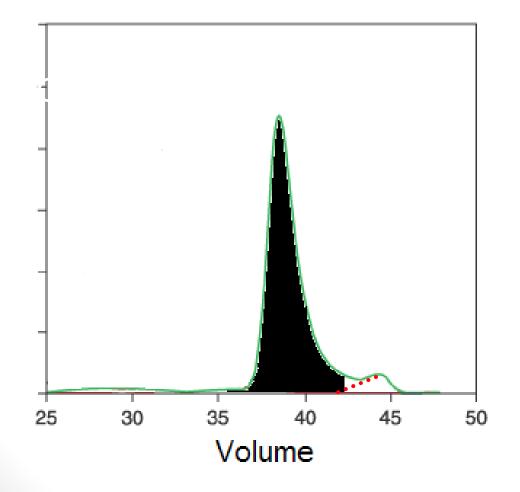

Elution of bound material from a column

- Elute with 40 Liters of buffer
- Elute with 2 column volumes
- Elute until A280 drops to a value of X
- Elute until slope of A280 trace decreases to a value of Y
- Elute until an unwanted component elutes


Decision Criteria Example: eluting a protein from a column


Decision Criteria – 40 LITER CUT: Yield loss


Decision Criteria – 2 Col. Vol. Cut: Impurities


Decision Criteria – A280 Target Cut: Better, but still yield loss

Decision Criteria – A280 Slope Cut: Better, but still has impurities

Decision Criteria – Component Cut: Best balance *if* impurity can be monitored in-line (or nearat-line) to allow active control

Aggregates in theory can be measured/detected via in-line capable methods like CD, light scattering, FTIR, A_{410} , other techniques

(Brorson and Phillips, BioProcess Intl Nov. 2005)

Potential Controls in Literature

- Cell culture- various critical parameters (non-CQA) are already monitored and controlled on-line (pH, Temp, etc.)
 - Potential for at-line sampling + rapid analysis
- Diafiltration/ Ultrafiltration- UV, pH and/or conductivity
- Proteolytic & Conjugation reactions- process dependent
- Solution mixing- UV, pH and/or conductivity
- Lyophilization- NIR spectroscopy, Manometric temperature measurement (MTM)
- Fill volume- NMR

The biotech world presents a unique set of challenges:

- Production by finicky and highly complex cell-based biological systems
 - highly sensitive to external conditions;
- In-process intermediates can be complex mixtures
 - desired protein may be a fraction of the bulk liquid;
- Worrisome, low level impurities (e.g., viruses) still a concern
 - even when present at levels undetectable by even the most sensitive inline/on-line/at-line technologies.
 - Removal validation for now
- In contrast, some significant challenges for small molecule drugs may not apply to biotech;
 - blending of aqueous protein solutions

Common objection for PAT in bioprocessing-"This is great for small molecule drugs, but real-time monitoring not always applicable in biotech"

Reality: Some CQA's not presently amenable to instantaneous on, in, at-line monitoring (e.g. complex biochemical attributes, low level impurities, virus)

However:

- Some obvious examples for simple unit ops exist-
 - solution mixing,
 - End point decisions for diafiltration

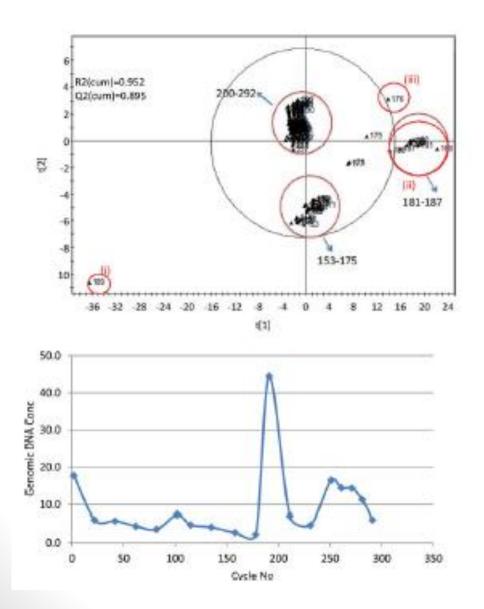
Near-at-line monitoring (sampling + rapid analysis) technological improvements are rapid

- Sampling and/or testing column effluents.
- Automated sampling of cell culture.

State of PAT in bioprocessing?

- Surveyed literature for examples of PAT in bioprocessing
 - Read et al. Biotech & Bioeng 2010
- PAT is defined in three main ways: Process control based on real-time, direct measurement of
 - Type #1: product (or raw material) critical quality attributes (CQA)
 - #2: parameters that directly correlate with a CQA
 - #3: parameters that confirm that a unit operation/piece of equipment continues to be fit for purpose
- Very few examples of true PAT (type #1) in bioprocessing, at that time (2010)

Process control and monitoring of product CQAs: 2010 Examples (Type 1)


Sensor	measurement principle	Application	Stage	Reference (s)
Surface Plasmon Resonance	Refractive index change	Assess product concentration and affinity	U	Jacquemart et al., 2008
High Performance Liquid Chromatography	Physicochemical properties	Assess product concentration and structure	U C, D	Larson et al., 2002 Rathore et al., 2009
Capillary Electrophoresis	Physicochemical properties	Assess product concentration and structure	D	Klyushnichenko and Kula, 2005

a. Stages of most likely utility. U = Upstream; C = Capture; D = Downstream,

New approaches enabling PAT

- Systems Biology
 - Metabolomics, proteomics, etc. may identify relationships between measurable process variables and cell culture state
 - Examples-
 - Near Infra-Red Spectroscopy established as an input for metabolic flux analysis modeling (Fazenda et al. 2013)
 - Read et al., 2014- Identified rate limiting amino acids by NMR & impacts on glycosylation
- Multivariate data analysis (MVDA)
 - Biotech processes generate huge datasets amenable to MVDA to predict process outcomes
 - Example- MVDA identified bioreactor scale-up issues and causes for batch deviations (Mercier et al. 2013)

MVDA- Chromatography Example

- Protein A cycled 300x with 6M Guanidine cleaning
- Retrospective analysisoriginal goal was to evaluate viral clearance
- Outliers correlated with repacks and DNA breakthrough
- Lute et al., J Chromatogr A. 2009;1216:3774–3783
- Rathore et al., Biotechnol.
 Prog., 28: 1308–1314, 2012

New approaches enabling PAT-2

- Robotics and automation
 - Will enable efficient and consistent sampling of complex process fluids
 - Example- Rapid glycan profiling from cell culture (Doherty et al., 2013)
- Advances in Mass spectroscopy
 - Rapid comprehensive biochemical analysis
- Capacitance probes to measure culture mass
 - On-line measurement of cell biomass and viability

The future: Evolution of PAT in Bioprocessing

- "Type 3 PAT" already routine practice (eg. Back pressure measurement on a column, gas flow meter in bioreactor)
- "Type 2 PAT" enabled by
 - Correlation of measurable process variables with CQA outcomes
 - Multivariate analysis- CQA predictive tools
 - Systems biology
- "Type 1 PAT" gradually surmounting technology barriers
 - Intense and purposeful R & D.
 - Robotics and automation
 - Advances in rapid analytics

Thanks to...

- Michael Boyne (OTR/CDER)
- Cyrus Agarabi (OTR/CDER)
- Erik Read (OBP/CDER)
- Scott Lute (OBP/CDER)
- Anurag Rathore (Indian Inst. Tech.)
- DMA and OBP management