Skip to Main Content

Course Listing for Environmental, Earth & Atmospheric Sciences

All courses, arranged by program, are listed in the catalog. If you cannot locate a specific course, try the Advanced Search. Current class schedules, with posted days and times, can be found on the NOW/Student Dashboard or by logging in to SiS.


Boundary Layer Meteorology (Formerly 85.501)

Description

This course draws upon the equations of motion in the atmosphere to develop a theoretical understanding of the atmospheric boundary layer. This understanding is compared with real observations taken with the Department's rawinsonde equipment, as well as published data. The emphasis is on blending theory and practice to enhance the student's understanding of the behavior of the atmosphere.

Advanced Synoptic Meteorology (Formerly 85.502)

Description

This course is designed for graduate students who have a strong background in mathematics and physics, but whose meteorology preparation is weak. The basic concepts of weather forecasting and analysis on synoptic scales are covered theoretically as well as in application to case studies and current weather. The coursework encourages the development of three - dimensional visualization techniques and an appreciation of the physics which controls weather systems.

Remote Sensing (Formerly 85.503)

Description

This course is a survey of ground based, balloon, rocket probe, radar and satellite remote sensing techniques. Optical and radio frequency remote sensing techniques are surveyed. The focus is on the determination of physical, chemical and dynamical quantities by remote sensing measurements. The theory is presented used to interpret data obtained by remote sensing techniques. Various inversion methods are discussed used to obtain spatial discrete quantities from line - of - sight observations. Modeling and simulation techniques are described and practiced.

Atmospheric Measurements and Data Analysis

Description

Against the backdrop of unprecedented global environmental change, meteorological and climatological observations have been thrust into the scientific and public spotlight. ATMO.5050 explores the range of instrumentation, measurement principles, and data analysis techniques used to monitor Earth's ever-changing weather and climate. From hands-on work with state-of-the-art field instruments, to computational data processing and visualization, students will gain a broad set of skills that will position them to succeed in both the observational and computational atmospheric science sub-fields.

Prerequisites

Pre-req: MATH.1310 Calculus I, and PHYS.1410 Physics I,and ENVI.2020 Earth Systems: Atmos & Oceans.

The Climate System (Formerly 85.508)

Description

The main elements of the Climate System are the atmosphere, ocean, biosphere, land surface, and the cryosphere; the primary input of energy is from the Sun. This course examines these elements, the ways in which they interact and how they can be modeled. The Global Energy Budget is examined and both natural and human-caused climate change are considered.

Regional Weather and Climate Modeling (Formerly 85.510)

Description

Mesoscale atmospheric dynamics and regional climate dynamics. Application of regional weather and climate model to regional weather, climate modeling and forecast problems. Multi-scale physical processes, such as mesoscale and convective-scale phenomena, low-level jets, mountain waves and orographic precipitation, land/sea breezes, cyclones etc., will be discussed in order to understand the linkage between regional weather and climate.

Prerequisites

Pre-req: ATMO 2340 Scientific FORTRAN Programming, ATMO 3010 Atmospheric Dynamics and ATMO 4150 Advanced Atmospheric Dynamics I.

Physical Meteorology (Formerly 85.513)

Description

This course explores the essentials of cloud physics, beginning with the basic laws of thermodynamics of both dry and moist atmospheres. Condensation, nucleation, and drop growth are studied in detail at an advanced level.

Atmospheric Structure and Dynamics (Formerly 85.515)

Description

The temperature, pressure and density structure of the atmosphere are reviewed, as well as the chemical composition. Topics include atmospheric and solar radiation, atmospheric heat budget and the hypsometric equation. Dynamics of the atmosphere explores the behavior of fluids on a rotating earth, global circulation, synoptic scale motions, perturbation theory of wave motions. Elements of climatic change and the effects of anthropogenic emissions on climate and weather will also be discussed.

Mesoscale Atmospheric Dynamics (Formerly 85.516)

Description

This course is designed for students to apply atmospheric dynamics and physical analysis techniques to mesoscale and convective-scale phenomena, including mesoscale convective systems, severe thunderstorms, tornadoes, dry lines, low-level jets, mountain waves and orographic precipitation, land/sea breezes, boundary layer rolls, and hurricanes. Emphasis will be given to the physical understanding of these processes instead of forecasting.

Prerequisites

Pre-req: ATMO 3010 Atmospheric Thermodynamics, and ATMO 4150 Advanced Atmospheric Dynamics.

Forecasting and Synoptic Techniques I (Formerly 85.518)

Description

This is the first of a two-course sequence that provides graduate students a combined theoretical and applied understanding of synoptic-scale meteorology, with an emphasis on forecasting applications. The first course introduces the concepts of vorticity advection and the quasi-geostrophic approximation, and applies them synoptic-scale cyclones, including nor'easters. The graduate students will learn to use Gempak graphics and will be introduced to the National Weather Service Weather Event Simulator, a combined hardware and software package that simulates the NWS forecast environment.

Air Pollution Control (Formerly 85.523)

Description

This course describes air pollutants, their characterization, ambient concentrations, effects on human health and the ecology, and the environmental laws and regulations that set standards on emission rates and ambient concentrations. The basics of air pollutant dispersion and transport are also covered. The main focus of the course is on emission control technologies for particulate matter, carbon monoxide, sulfur oxides, nitrogen oxides, organic and inorganic toxic pollutants. The following technologies are discussed: cyclones, scrubbers, electrostatic precipitators, baghouses, adsorption, absorption and incineration. The automobile and its emission control are reviewed. Alternative methods are also discussed, such as fuel substitution, conservation and efficiency improvement.

Simple Atmospheric Models (Formerly 85.524)

Description

The basic wave types and fundamental dynamics of atmospheric motion are considered through analytical and numerical modeling of the main simplifications (models) of the full equations of motion for the atmosphere. These models are derived by making assumptions that greatly simplify the full equations and which isolate individual wave types and specific physical mechanisms. Together, these models describe the basic aspects of atmospheric motion: the maintenance and structure of the jet stream, the genesis and propagation of synoptic storms, and the forced and internal contributions to seasonal patterns of midlatitude climate variability.

Advanced Forecasting (Formerly 85.529)

Description

This course builds on the student's basic understanding of storm systems and extends their theoretical knowledge to particular weather patterns. Topics include nowcasting, long-range forecasting, snow squalls, sea breeze, and especially deep convection. Particular attention is paid to the structure and development of supercells. Students will also be required to write a special report on a topic assigned by the professor, and present this in class as a special lecture.

Tropical Meteorology (Formerly 85.540)

Description

An introduction to the tropical atmosphere, including tropical climatology, structure and dynamics of easterly waves, tropical cyclones and monsoon circulation's.

Prerequisites

Pre-Req: ENVI.2020 Earth & Env Systems II.

Satellite and Rad Meteorology (Formerly 85.550)

Description

There is currently no description available for this course.

Air Pollution Phenomenology (Formerly 85.571)

Description

The course centers on transport, dispersion and transformation of air pollutants in the atmosphere. Atmospheric structure and dynamics are reviewed. The atmospheric dispersion equation is developed for instantaneous and steady- state releases of pollutants, including the Gaussian Plume Equation for point, line and area sources. The sources and transport of particulate matter are discussed, including haze and visibility impairment. Other topics are photooxidants (ozone), acid deposition, stratospheric ozone depletion and the greenhouse effect.

Meteorology for Teachers (Formerly 85.581)

Description

The purpose of this course is to provide the middle school teacher with: a thorough understanding of several key concepts and processes of meteorology; the ability to effectively present meteorology topics that are appropriate for the middle school science classroom; the tools necessary to develop inquiry based lessons for the classroom.

Directed Study (Formerly 85.591)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Professional Experience Atmospheric Science (Formerly 85.595)

Description

Professional experience with a private of public employer. Written report and supervisor evaluation required. "Variable credit course, student chooses appropriate amount of credits when registering."

Special Topics in Meteorology (Formerly 85.641)

Description

There is currently no description available for this course.

Special Topics in Meteorology (Formerly 85.642)

Description

There is currently no description available for this course.

Graduate Research Seminar (Formerly 85.701)

Description

There is currently no description available for this course.

Master's Research (Formerly 85.731)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Graduate Research (Formerly 85.732)

Description

There is currently no description available for this course.

Master's Research in Atmospheric Sciences (Formerly 85.733)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Master's Thesis in Atmospheric Sciences (Formerly 85.743)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Doctoral Dissertation in Atmospheric Sciences (Formerly 85.753)

Description

There is currently no description available for this course.

Continuing Graduate Research (PhD) (Formerly 85.760)

Description

Continuing Graduate Research at the PhD level. May be taken for variable credit.

PhD Research in Atmospheric Sciences (Formerly 85.763)

Description

There is currently no description available for this course.

Doctoral Dissertation (Formerly 85.765)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Doctoral Dissertation (Formerly 85.768)

Description

There is currently no description available for this course.

Graduate Seminar in Environmental Sciences

Description

The Graduate Seminar in Environmental Sciences includes speaker presentations by invited external and internal faculty, as well as student presentations. Graduate seminar students will also be expected to evaluate professional papers and complete several writing assignments specific to presentations and/or research papers. The class includes interdisciplinary topics in Atmospheric Sciences, Geosciences, and Environmental Sciences. The goals are to improve oral and written communication skills and expand knowledge of state-of-the-art research approaches and research themes.

Prerequisites

Open to Graduate Students in Environmental Studies.

Freshwater Ecology

Description

Freshwater Ecology is a 3-credit lecture course that covers the basic concepts regarding the physical structure, water quality, and ecological communities of freshwater lake and pond as influenced by the environment. Physical and chemical concepts (e.g., lake circulation patterns, thermal stratification, nutrient budgets, etc.) are incorporated with the lake biota (e.g., phytoplankton, zooplankton, and fish) and synthesized to provide perspective on ecosystem function. Within this scientific framework, wee will also study the application of practical lake management using current lake and watershed-based management tools and options.

Prerequisites

Pre-req: CHEM.1210 Chemistry I, or BIOL1150 Introduction to Biology Seminar, or ATMO.1410 Weather and Climate, or ENVI.1010 Environmental Science Seminar, or Permission of Instructor.

Geographic Information Systems (Formerly 87.504)

Description

This course will cover most of the elements of a geographic information system commonly found in basic and mid-level GIS applications. Topics will include file organization, data entry including digitizing and image registration, geocoding, thematic mapping, Structured Query Language (SQL) applications, map algebra, raster operations, interpolative methods, distance mapping, density mapping, cost surfaces, and an introduction to modeling. This course will use the Arcview GIS platform.

Environmental Pollution

Description

This class is designed for graduate students in Environmental, Earth and Atmospheric Sciences, Environmental Engineering, Environmental Chemistry and Biology. The class describes the origin, transport, and transformation of pollutants in the environmental behavior and biological impacts of contaminants. Students also will learn about national and international regulations regards pollutant emissions and technology for control and remediation.

Prerequisites

Pre-req: ENVI.2010 Earth Environmental Systems I, or CHEM.1210 Chemistry I, and CHEM.1220 Chemistry II, or Permission of Instructor.

Climate Change: Science, Communication, and Solutions (Formerly 81.516/BIOL.5160)

Description

Like many of the 'grand challenges' currently facing society, climate change is a complex problem that cuts across academic disciplines, including the physical sciences, biology, engineering, economics, political sciences, and behavioral psychology. In this course, we integrate recent research from many of these disciplines to explore the scientific basis of climate change, its impacts on the natural world and human society, and societal responses to it. Through interactive simulations, class discussions, lectures, current scientific literature, and student-led projects, the goal of this course is to empower students to come to their own decisions about how society can address the climate change challenge. Students taking this course at the graduate level will lead group projects.

Prerequisites

Co-req: ENVI.5170L Climate Change: Science, Communication, Solutions Recitation Lab.

Climate Change: Science, Communication, Solutions Recitation Lab

Description

This course is designed to integrate closely with the lecture course, Climate Change: Science, Communication, and Solutions. Students will use interactive simulations, build models, and create media projects that explore climate change and sustainability. Topics include the physical climate system and carbon cycle, human energy systems, and climate policy and economics. Students take this course at the graduate level will lead group projects.

Prerequisites

Co-req: ENVI.5160 Climate Change: Science, Communication, Solutions.

Methods in Environmental Impact Assessment and Analysis (Formerly 87.520)

Description

This course describes, and illustrates with case studies, environmental evaluation required to implement projects and policies potentially affecting the environment. Methods available to integrate technical impact predictions, prepare Environmental Statements, and make informed decisions regarding environmental effects will be covered. Incorporation of sustainability and permitting with environmental analyses will also be examined.

Systems thinking for Sustainability

Description

In this course, students will develop and apply systems thinking skills to explore, understand, and design solutions to one of the defining challenges of our time: charting a transition to a thriving, sustainable society on a finite planet. 'System thinking' is a way of understanding complex problems from a holistic, long-term perspective. It provides a set of tools to visualize the structure of systems - or the interactions between system elements - and how that structure generates dynamic behavior. Systems thinking provides a framework and approaches that transcend disciplines and help identify strategic points of intervention in complex problems. 'System dynamics' extends systems thinking to include formal mathematical modeling of the interactions between system elements. It uses computer-assisted simulation to facilitate understanding and strategic management of complex systems. This course uses systems thinking, simulation, and system dynamics to enable students to make sense of cross-disciplinary sustainability challenges and design strategic solutions.

Prerequisites

This course is open for students in the M.S. and Ph.D. programs of Environmental Studies and Earth System Science. Permission to enroll can also be requested from the instructor.

Earth System Science

Description

ENVI.5500 explores a broad range of Earth science disciplines, with a focus on active research areas in each field. Core concepts and research tools from atmospheric science, hydrology, ecology, and geochemistry are reviewed and discussed within the context of major research thrusts. Emphasis will be placed on Earth system changes occurring since the start of the Anthropocene, including those related to climate change, nutrient cycling, land use change, and coastal processes.

Prerequisites

Pre-req: MATH.1310 Calculus I, and PHYS.1410 Physics I.

Energy and Environment (Formerly 87.572)

Description

This course discusses the world and U.S. primary energy resources and consumption, including fossil, nuclear and renewable energy sources. Principles of thermodynamics are reviewed, especially in regard to energy usage efficiency improvement. A significant part of the course is devoted to electricity production, including site visits to fossil and nuclear power plants. The environmental effects are discussed of energy extraction and consumption, such as SOx, NOx and particulate matter emissions, acid deposition, the greenhouse effect, radioactive waste disposal. Also the risks of accidents are discussed in fossil and nuclear fuel usage.

Climate Change in the Classroom (Formerly 87.585)

Description

The course is designed to help teachers from all levels improve their ability to foster student learning about the earth's changing climate. The course addresses the scientific, sociological, and pedagogical dimensions associated with climate change science. How to incorporate climate change into existing curriculum across disciplines is considered.

Professional Communication in Earth System Science

Description

This course will introduce students to popular science communication in the broader contexts of writing, speaking, editing, and critiquing. Students will be provided intellectual resources for constructive critical analysis of popular science communication in a variety of real-world settings in order to cultivate students' practical communication skills, with particular emphasis on effective speaking, writing, and exhibiting on scientific and science-related topics to a variety of audiences, and provide students with a range of resources and skills for effective communication of complex material. Additionally, this course provide students with the opportunity to undertake a substantial practical project in either science writing or science exhibiting.

Prerequisites

Pre-req: EEAS Graduate level students only, or Permission of Instructor.

Dissertation Research in Earth System Science

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Prerequisites

For students enrolled in the Ph.D. program of Earth System Science.

Paleoclimatology (Formerly 89.501)

Description

This course provides students with an overview of paleoclimatology by examining the use of proxy records, such as marine and lake sediment sequences, ice cores, tree rings, corals and historical data to reconstruct past climatic conditions. Dating methods will be introduced. Throughout, we will critically analyze our understanding of past climates and environments and identify directions for future research. Topics include: abrupt climate change, human evolution and climate, biosphere-climate interactions and paleoclimate modeling.

Quantitative Gemorphology (Formerly 89.502)

Description

This course follows the path of material as it is weathered form bedrock, moved down hillslopes and transported via glaciers and rivers. Emphasis is on 1) quantifying erosion and sediment transport, 2) applying computer-based models and conservation of mass equations to earth surface processes and 3) understanding long-term landform evolution.

Geology of New England (Formerly 89.510)

Description

New England has an ancient and diverse geologic history. This course covers the tectonic and sedimentary processes that formed the bedrock of New England and New York, the Pleistocene history of ice sheet erosion and deposition, and the most recent period of human interactions with the landscape.

Prerequisites

Pre-req: ENVI.2010 Earth Systems: Geosphere, or GEOL.3190 Earth Surface Processes, or GEOL.3310 Earth History.

Exploring the Solar System

Description

We live in a remarkable era of robotic space exploration. In this course, we will walk through the formation of the Solar System and the comparative evolutions of the planets, moons, and other objects form a geological perspective, with special attention paid to the latest research and missions. We will also consider the prospects for life on other planetary bodies in our Solar System and in extrasolar planetary systems.

Prerequisites

Pre-req: CHEM.1110 General Chemistry I, and PHYS.1030 General Physics I, and GEOL.1010 General Geology.

Topics in Environmental Geochemistry (Formerly 89.515)

Description

Case-based course dealing with the application of thermodynamics and kinetics, acid-base equilibria, oxidation-reduction reactions, radioactive and stable isotopes, and mineral chemistry to the understanding and solution of environmental problems. Other topics will be considered based on student interest.

Structural Geology (Formerly 89.520)

Description

An analysis of crustal deformation through detailed study of geologic structures with emphasis upon the response of geologic materials to stress and strain. Field techniques, tectonic principles, and geometrical analysis are employed.

Prerequisites

Co-req: GEOL 5200L Structural Geology Laboratory.

Regional Hydrogeology (Formerly 89.524)

Description

Concentrating on the storage and steady state flow of ground water at a basin-wide scale, thecourse studies flow nets, fluid potential, and numerical modeling of flow controlled by basingeometry and geology; water movement in the zone of aeration, the interaction of groundwaterwith surface water, the transport and dispersion of contaminants, and the use of modeling forgroundwater management.

Groundwater Modeling

Description

This course covers the concepts and practice of mathematical and numerical modeling of saturated groundwater flow and solute transport. Students will use industry-standard groundwater modeling software, including MODFLOW, MODPATH, MT3DMS, SEAWAT, and PHT3D for single- and variable-density flow, particle tracking, and solute and reactive transport. Emphasis will be on formulating mathematical representations of flow, use of groundwater models with graphical user interfaces, and post-processing and analysis of model results.

Prerequisites

Pre-req: GEOL.3140 Hydrogeology, and MATH.1310 Calculus I.

Lab and Field Methods in Hydrogeology

Description

The purpose of this course is to learn how to engage in scientific and observational inquiry and to use hydrologic instruments for collecting lab and field data. Students will work with water level sensors, multiparameter water quality probes, and permeameters. Students will also learn basic surveying techniques, characterize aquifer properties, and measure water table levels in monitoring well installed across campus. Emphasis will be placed of data collection and exploratory data analysis. Class will be spent in the classroom and outdoors.

Prerequisites

Pre-req: GEOL.3140 Hydrogeology.

Isotopes in Environmental and Geosciences (Formerly 89.531)

Description

The course will show how radioactive and stable isotopes can be used to understand environmental and geological systems. Topics to be covered include radiometric dating using short and long half-life isotopes, radiogenic isotopic tracers, and stable isotopes.

Applied Geophysics (Formerly 89.556)

Description

Application of geophysics to problems in geology and environmental science. Principles and techniques of gravity, magnetic, electrical, and seismic methods. Field projects and surveys.

Oceanography for Teachers (Formerly 89.585)

Description

This course will introduce students to basic oceanographic principles and processes. Content will be linked to National and State Science Standards. Students will create a number of oceanography-based lessons linked to the standards. Pedagogy will be modeled in relation to teacher instruction and student learning.

Special Topics: Environmental Geoscience (Formerly 89.593)

Description

Student/Instructor selected in-depth study of a specific topic(s) within the Environmental Geosciences of a closely related field.

Master's Research in Environmental Geoscience (Formerly 89.731)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."

Master's Thesis in Environmental Geoscience (Formerly 89.741)

Description

"Variable credit course, student chooses appropriate amount of credits when registering."